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Abstract
We present a progress report on our work on lattice Boltzmann methods for
colloidal suspensions. We focus on the treatment of colloidal particles in binary
solvents and on the inclusion of thermal noise. For a benchmark problem of
colloids sedimenting and becoming trapped by capillary forces at a horizontal
interface between two fluids, we discuss the criteria for parameter selection,
and address the inevitable compromise between computational resources and
simulation accuracy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The lattice Boltzmann equation (LB equation, or LBE) is a widely used lattice formulation
of fluid mechanics [1]. It offers a faithful discretization of the Navier–Stokes equation of
isothermal, near-incompressible fluid flow, and is very well adapted to parallel computation [2].
Although used for large-scale fluid dynamics simulations such as those of flows around aircraft
wings [3], the LBE approach is particularly adapted to simulating mesoscopic problems [4].
These include, for example, porous medium flows, and flows of complex and multicomponent
fluids with microstructure [5–9]. The latter can be modelled using various extensions of the
basic algorithm for a single-component fluid [9–11].

In this paper we outline some recent progress towards the creation and use of a versatile
LB code for colloids in single-phase and (particularly) biphasic fluid solvents [12]. The LB
algorithm is not wholly intuitive, and the mapping of simulation parameters onto real ones has
to be carried out with some care, with attention paid to possible sources of systematic error.
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For problems involving coarsening of binary fluids, the required validation is provided in [6];
below, we discuss some of the additional considerations that arise for colloids (section 6). In
addition, because of the mesoscopic length scales involved, such a code must allow a proper
treatment of thermal noise. We have recently identified and resolved a long-standing difficulty
with the incorporation of noise in the LB approach [13], and this is discussed in section 7.
Before turning to these topics we briefly review, in sections 2–5, the LB algorithm for a
single-phase fluid, for binary fluids, and for colloids.

2. The LB algorithm for a single-phase fluid

The LB approach works one level beneath the usual equations of hydrodynamics, at the level of
the collisional and propagating dynamics of distribution functions. The distribution function
fi (x, t) at lattice site x can be thought of as the density of (fictitious) fluid particles with
velocity ci at this site. The velocity set is chosen so that in one time step �t , the displacement
ci�t represents either the displacement to a neighbouring lattice site or the null displacement.
We use a cubic D3Q15 lattice, meaning a three-dimensional lattice with 15 velocities at each
site [15].

Note that a larger number of velocities, and hence of distribution functions, are introduced
at each lattice site than is strictly needed to create the correct number of hydrodynamic degrees
of freedom for fluid-mechanical purposes. These extra degrees of freedom are required so
as to ensure rotational and Galilean invariance [1]; they lead to ‘ghost modes’ which feature
strongly in section 7 below. Setting these ghost modes aside, the hydrodynamic fields (which
are all that matter for athermal fluid mechanics) are represented by various moments of the
distribution functions. For example the local density of the fluid is the zeroth moment

ρ(x, t) =
∑

i

fi (x, t) (1)

whereas the local momentum density g = ρv is given by

ρv =
∑

i

fi (x, t)ci (2)

and the momentum flux (or kinetic stress tensor) is given by

Π =
∑

i

fi ci ci (3)

where ci ci is a dyadic product.
Although the LB method actually describes a compressible fluid, in using it one always

ensures that the Mach number is kept small with the result that the flow is nearly incompressible.
We choose our unit of mass so that ρ = 1 for a quiescent fluid, and choose the lattice parameter
as the unit of length, and the time step as the unit of time (�t = 1). This defines a set of lattice
units (LU). The interconversion between these and real physical units raises interesting issues
in parameter selection (see section 6).

The LB algorithm updates the distribution functions fi by a combination of ‘streaming’
and ‘collision’. These are often thought of as two different steps in the algorithm. Streaming
passes each distribution function fi to the neighbouring site appropriate to the velocity ci that
it governs; whereas collision is an on-site update of the various fi which conserves mass and
momentum (but not energy), creates dissipation, and allows diffusion of momentum. (The
diffusivity of momentum is the kinematic viscosity η/ρ of the fluid.) In combination, the
streaming and collision steps may be written as

fi (x + ci , t + 1) − fi (x, t) =
∑

j

Li j
(

f j (x, t) − f 0
j (x, t)

)
(4)
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where Li j is a collision matrix, often chosen as the lattice BGK matrix δi j/τ with τ a relaxation
time. In equation (4), f 0

j (x, t) is an equilibrium distribution [1] which itself depends on the
local values of ρ(x, t) and v(x, t), so the collision process (even with the stated BGK form
for Li j ) is not diagonal among the f s. (The nontrivial structure of its eigenmodes will be
important in section 7.)

Meanwhile, the fluid shear viscosity is given (in LU) by

η = c2
s (2τ − 1)ρ/2 (5)

where cs is the sound speed; for the D3Q15 lattice that we use,cs = 1/
√

3 in LU. (There is also a
bulk viscosity, which for this lattice is ζ = 2η/3. Since the code is run in a near-incompressible
limit, the precise value of the bulk viscosity is relatively unimportant.) In practice τ = 1 is
numerically efficient: in this case the collision resets the fi to local equilibrium, each time
step. Larger values of τ are possible, but can lead to numerical problems. In particular it
is not possible for the momentum to be transported across a given distance by diffusion any
faster than it can get there via sound modes (at speed cs), so η/ρ values large compared to cs

will give incorrect momentum transport at short distances (and/or unwanted non-Newtonian
effects [16]). Viscosity values much smaller than unity can be used, and these are very helpful
in studying phase separation of binary fluids at high Reynolds number [6, 7].

The basic LB algorithm, as just described, is sufficient to model isothermal flow of a
single-phase fluid with a variety of boundary conditions [1]. In the continuum limit for the
bulk fluid, one recovers (with Greek suffices for Cartesian components)

∂tρ + ∇αgα = 0 (6)

∂t gα + ∇β
αβ = 0 (7)


αβ = gαvβ + pδαβ − ηαβγ ε∇γ vε. (8)

Here vα = gα/ρ is the local fluid velocity, p is the pressure in a quiescent fluid (given in the LB
approach by an ideal gas equation of state p = ρc2

s ), and ηαβγ ε = ηδαγ δβε +ηδβγ δαε + ζ δαβδγ ε

is the tensor of viscosities appropriate to a Newtonian fluid. It is possible to impose shearing
boundary conditions through an imposed fluid velocity or stress at a pair of walls parallel to
lattice directions; less obviously (given the existence of the underlying lattice) one can also
introduce Lees–Edwards-type sheared periodic boundary conditions [14]. One limitation is
that the fluid velocity throughout the system must remain small compared to the sound speed.
This is a stronger condition than that of small Mach number (small compressibility) because
it implies an absolute reference frame against which the flow speed is limited. In shear flow,
however, this limit can be overcome by judicious use of multiple Lees–Edwards planes [14].

3. Binary fluids in the LB approach

Binary fluids can be handled by an extension to the above approach [10, 15], in which a second
set of distribution functions gi(x, t) is introduced. Analogously with equations (1)–(3), the
low-order moments govern the compositional order parameter φ(x, t) and its advective and
diffusive fluxes. The equilibrium distribution g0

i involves an order parameter mobility and a
chemical potentialµwhich derives from a well-chosen free energy functional F(φ,∇φ),which
we take to be of Landau–Ginzburg form [6, 15]. A second relaxation time is also introduced
although, rather unintuitively, the order parameter mobility, as long as it is independent of φ,
can be varied without changing this relaxation time (varying it instead by the choice of g0

i ). In
our codes this second relaxation time is set to unity to optimize numerical efficiency; thus the
gi are reset to local equilibrium every time step.
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The binary fluid LB algorithm is in many ways less satisfactory than that for a single fluid.
For example, if a static droplet of one fluid is surrounded by another, there are weak violations of
detailed balance due to ‘spurious fluxes’ which arise from the fact that the proper conservation
laws for the order parameter are not built in at a deep enough level. In future it may be possible
to improve on this [17], but meanwhile the algorithm gives useful results for phase separation
dynamics [6, 7, 18, 19], phase separation with a temperature ramp [20], droplet break-up under
shear [21, 22], and related problems. In combination with Lees–Edwards boundary conditions
it allows the problem of sheared spinodal phase separation to be studied; we hope to publish
more on this soon [23].

One advantage of the LB method over others for binary fluids is that, by working at
the level of distribution functions, it avoids the hydrodynamic singularities that arise during
pinch-off and topological reorganization of fluid domains [24]. Such singularities are smoothed
out by order parameter diffusion; obviously this is only helpful under conditions where the
singularities are a nuisance, rather than the controlling physical effect. The binary fluid LB
method does require careful parameter steering to avoid spurious effects such as anisotropy
of the fluid interface, and excessive order parameter diffusion in regions where this should be
negligible compared to advection [6].

4. Colloid hydrodynamics in the LB approach

The introduction of moving solid objects in the LB method is a somewhat complicated
procedure [9, 25–27]. Firstly the objects have to be mapped onto the lattice grid; but since
they may be large and slowly moving, their positions cannot be moved by discrete jumps of
one lattice unit. Hence the colloids are modelled off lattice, but each defines a set of links
of the lattice crossed by the surface of the colloidal particle, and this link set is subject to
discrete modification at each time step. The fluid distribution functions at these link nodes is
handled via a ‘bounce-back’ procedure, in which velocities that would correspond to crossing
into the colloid are reflected back into the fluid according to certain rules. The resulting force
and torque on the colloid is found, and used to update its velocity and angular velocity. This
information is not only used to update the colloid positions each time step, but fed back into the
bounce-back prescription for the next step (which depends on the local velocity of the moving
solid boundary).

In our work we adopt and modify the prescription of [27]. In contrast to earlier work [9]
where the interior of each colloid was filled with a fictitious fluid, here the bounce-back rules
treat the colloidal particles as truly solid. This distinction is important when dealing with
binary solvents, in which one needs to develop rules for the compositional order parameter
φ as well as the other hydrodynamic fields [12]. Due to the changing discretization of the
boundary links, the shape of each colloid is in effect changing slightly as it moves across the
lattice; but it is possible to calibrate this effect and get acceptable hydrodynamic behaviour
for surprisingly small colloids, for example of radius a = 2.4 lattice units. However, the
discrepancy between the real particle radius and the measured hydrodynamic one increases
with viscosity [12], for reasons that are currently under investigation.

An alternative route would be to treat colloids as point particles and couple each of these
locally to the fluid velocity, with a friction constant fixed by the Stokes law. This is a very
useful approach to polymer hydrodynamics, where the procedure is applied to each bead in
a long chain [28]. Since that problem is known to be dominated by far-field effects (leading
to Zimm rather than Rouse dynamics), the fact that the near-field flow is treated inaccurately
by such an approach does not matter. However, for colloid hydrodynamics it certainly does
matter—for example, this method would not give accurate results for sedimentation of a small
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group of particles at separations comparable to their diameters, even if no very close contacts
(lubrication forces) came into play. Hence for a general-purpose colloidal hydrodynamics
code there is no way to bypass the bounce-back procedure, or some equivalently elaborate
scheme, in which forces are explicitly distributed over the surface of each colloid.

An important part of the hydrodynamics of interacting colloids involves near-field
lubrication forces. At small surface-to-surface distances these have a strong divergence in
the normal component (and a much weaker one in the tangential one) which the LB method
can only resolve down to separations between colloidal surfaces of order one lattice spacing.
These strong local contributions, unlike the other hydrodynamic terms, are pairwise additive
across the colloid–colloid contacts. Hence their absence from the LB method can be rectified
by patching in, at short distances r < rc only, a velocity-dependent lubrication force [27],
acting directly between the particles. (In our code, we so far treat the normal component
only [12]; rc is chosen empirically, and corresponds to a lubrication layer thickness h = r −2a
of about 0.5 in lattice units.) However, this brings in its own difficulties; because the force is
velocity dependent, an implicit update scheme is now essential for the colloid dynamics. The
computational time required for this scales badly with the size of any ‘hydrodynamic clusters’
(clusters of colloids mutually linked together by separations less than rc) and such clusters can
get very large at high concentrations.

In effect, in this regime, one is inverting the pairwise-additive colloidal drag matrix to get
a mobility matrix, every time step. Indeed algorithms for colloid hydrodynamics exist that do
only this, within a pairwise lubrication approximation [29], ignoring the far-field contributions
that in our case are handled by the LB method. (This far field can be handled within Stokesian
dynamics [30] which, like the pairwise lubrication algorithm but unlike the LB one, assumes
creeping flow.) Such work shows that deviations from the hard-sphere potential are critical in
determining, for example, jamming behaviour under shear [29].

In principle an LB algorithm with lubrication corrections should give results that can
encompass this strong clustering limit without sacrificing the long-distance aspects of many-
body hydrodynamics [27]. However, in view of the computational scaling issue, we have not
attempted to explore this aspect, and prefer instead to bypass the lubrication problem entirely.
This can be done by introducing a strong, short-range repulsion between colloids designed to
ensure that interparticle separations r < rc are rare, so that the bad scaling does not arise. Of
course such a force is often actually present, for example, in colloids interacting via a screened
Coulomb force. We expect this additional repulsion to be unimportant for some scientific
issues (including those that we address below) but not others (e.g. not hydrodynamic jamming
under shear [29]).

5. Colloids in binary solvents

A colloid in a pair of solvents is said to exhibit neutral wetting when the solid–fluid interfacial
tensions σ̃ are the same for the two solvents. This corresponds to a contact angle of π/2. Such
colloids are strongly surface active; the interfacial energy is 4πa2σ̃ for a colloid wherever it is
placed in the two fluids, but placing it symmetrically across the interface between them reduces
the area of fluid–fluid contact by πa2. Hence a neutrally wet colloid is bound to the fluid–fluid
interface by an energy πa2σ with σ the fluid–fluid interfacial tension. In most circumstances
this quantity vastly exceeds kBT and therefore colloidal adsorption to the interface is effectively
irreversible. This is the basis of several technologies involving emulsions stabilized by solids,
which are generally called ‘Pickering emulsions’ [31]. Studying new variants of these is a
primary motivation for our development of an LB code to handle colloids in binary solvents.
Our current implementation of the code is restricted to neutral wetting, but similar physics
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Time Step: 001000 Time Step: 085000 Time Step: 200000

Figure 1. Snapshot configurations for the benchmark sedimentation problem with Ca = 280 and
Re = 0.02.

should be seen for a range of angles around π/2. (The issue of how to vary the contact angle
away from neutrality is understood in principle, and implemented but not yet tested in our
colloid codes [12, 15].)

6. The benchmark problem and parameter selection

Before using a somewhat complicated algorithm (such as the LB one) to gain quantitative
results for an equally complicated problem (such as colloids in binary solvents) it is important
to complete a range of benchmark tests so as to give qualitative and quantitative insights
into sources of systematic error. One must also develop a strategy for choosing simulation
parameters to get close enough (given these sources of error) to some experimentally realizable
system of interest. For binary fluids undergoing coarsening, extensive parameter testing is
reported by Kendon et al [6], and we build on this wherever we can. But as far as colloids
in binary solvents are concerned, the task is not yet finished: the results presented below are
preliminary only.

To illustrate the principles involved, let us consider a simple geometry in which a
suspension of colloids, at low volume fraction, sediments under gravity within a stratified
pair of layers of two immiscible fluids of equal viscosity. Figure 1 gives a series of snapshots
of this process; each shows the bottom half of a system with periodic boundary conditions.
Thus, one fluid lies below the interface, another on top (and out of view above this is a second
interface which restores periodicity in the vertical direction). The colloidal particles are initially
placed at random, so some of them lie across the interface but most do not. They then fall
under gravity and, for the parameters selected here, they all end up attached to the interface.

As is proper in a fluid mechanics problem, we address the physics of the situation by
identifying some relevant dimensionless numbers. Indeed, these are particularly helpful
in mapping between lattice units and the real world. The relevant numbers include the
gravitational Reynolds and Peclet numbers [32]:

Re = vsedaρ

η
(9)
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where vsed = �mg/6πηa is the sedimentation velocity, and

Pe = vseda

D
(10)

where D = kBT/6πηa is the diffusion constant of a colloid. Note that for terrestrial gravity g
and typical density mismatch (�mg/mg ∼ 0.1 − 1, with m = ρ4πa3/3) one has Re typically
of order 10−7(a/aµ)3 and Pe of order (a/aµ)4. Here we have introduced a convenient length
scale aµ ≡ 1 µm. Thus a colloid of, say, a = 10 µm has negligibly small inertial effects
(small Re) and also negligibly small diffusion (large Pe), when falling under gravity. For
a = 100 nm, Re is still negligible but Pe is now small. Note that Pe may also be written as
a/h, where h = kBT/�mg is the gravitational decay length for the colloidal concentration in
barometric equilibrium.

The fluid–fluid interfacial tension σ introduces another dimensionless parameter, which
we can write as a (gravitational) capillary number

Ca = v0

vsed
. (11)

Here, v0 is an intrinsic velocity scale σ/η which governs the dynamics of a disturbed interface
between fluids [6]. Thus for large Ca, the interface can adapt easily to the arrival of particles
but for small values the particles are likely to break through it as they sediment. Indeed,
Ca = 6πσa/�mg, so, to within an order-unity factor, Ca also determines whether the force
of attachment of a particle to the fluid–fluid interface is enough to hold it there against gravity.
(At large Ca sedimenting particles should gather at the interface whereas for small Ca they
will fall off it even if placed there gently.) Note that for typical binary fluid parameters,
Ca � 3 × 108(a/aµ)−2. This large value (at a � aµ) reflects the strength of the binding to
fluid–fluid interfaces: particle sizes of order millimetres are needed before gravity will detach
a neutrally wetting particle from, say, an oil–water interface. Note that a similar dimensionless
quantity arises for the gravitational equilibrium of a pendant droplet of one fluid suspended
against gravity in another by capillary forces; in this context, Ca−1 is usually called the Bond
number.

Under conditions where sedimentation is strong and diffusion weak, we can set Pe to be
infinite. This is in fact the default position in the LB method unless noise is explicitly added.
(A way to do that is described in section 7.) More interesting is the role of the Reynolds and
capillary numbers; we address these in turn.

As outlined above, for typical colloid parameters Re is extremely small. However, the LB
method works by solving dynamically a discretization of the full hydrodynamic equations (6)–
(8). This means in practice that Re can never be made fully realistic for colloids, as we now
explain. A reasonable duration of a simulation is of order 104 (or perhaps 105) time steps; a
reasonable lattice size of order 1283 (achievable for repeat runs on a shared-memory machine)
or perhaps 5123 (for bespoke production runs on national supercomputer facilities). Note
that in the LB method the computing resource per time step scales with reasonable linearity
with system volume on these platforms; but linear volume scaling means that ten times as
much computer resource buys little more than a factor two in length scale. If the phenomena
of interest also take longer at larger scales (e.g. phase separation) the duration of the run
must also be increased. For colloidal particles to move a significant distance in the run times
achievable, their velocities vsed must be of order 10−3 LU or more. However, the maximum
safe viscosity is of order 1 LU; the colloid radius a is a few LU; and the density ρ = 1;
therefore Re = vsedρa/η must be set at about 10−2, or else no colloids will move at all far
during the course of the simulation. Re can be reduced from this by perhaps one or two orders
of magnitude by reducing vsed, but only at the cost of very long simulation times. Even this
does not approach the tiny values of Re often encountered for real colloids.
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However, in most problems, this does not matter: all Reynolds numbers below an
appropriate (problem-dependent) threshold are already virtually equivalent. To see this, note
that at low enough Re, the velocity field around a sedimenting particle is quasi-static; this
Stokesian limit represents diffusive equilibrium of momentum. In principle one could use a
variety of algorithms to solve the quasi-static problem. But whatever method was used, it
would not be appropriate to do this to accuracy of one part in 107, when there are various per
cent-level errors arising from other aspects of the code (such as the discretization of the colloid
links in the bounce-back algorithm, and in the treatment of interfacial physics). Thus, the goal
of the LB method should not be to simulate ‘fully realistic’ Re (of order 10−7) but to use values
of Re small enough that the resulting error, in the colloid and solvent dynamics, is no more
than a few per cent. Such values represent a ‘realistic’ but not a ‘fully realistic’ simulation.

To explore this further, figure 2 shows contour plots for the magnitude of the difference�u
in the normalized velocity field u = v/vsed for various simulations of a single falling sphere
(with periodic boundary conditions). Our ‘reference’ simulation has very small Re = 3×10−6.
The flow is computed by working in the co-falling frame so that the velocity field converges to
a time-independent limit on the lattice; this can be calculated with high accuracy. (Note that
such a frame cannot be defined for a problem involving more than one sphere.) The resulting
contour lines for u itself are shown in the first panel; difference plots for Re = 0.008, 0.08,
and 0.8 are then presented. The latter simulations did not use the co-falling frame; the two
higher values are in a range realizable for multi-sphere problems, using reasonable run times.
We find that for Re = 0.08, |�u| � 0.03 through the main bulk of the fluid, with a slightly
larger error close to the colloid. It is possible that this error is partly from the sudden shape
changes of the particle as it crosses the lattice (rather than directly from the finite diffusivity
of the momentum field). In any case, the deviation from the zero-Reynolds-number mobility
for the falling sphere is about 2%. This suggests that Re < 0.1 represents an acceptably small
value for most colloid simulations, and that somewhat larger values might even be acceptable
(at least for qualitative exploration of parameter space prior to large-scale production runs;
even at Re = 0.8 we find an error in vsed of only about 5%). This concurs with the comments
of Batchelor [33] that in flow past a sphere, all Re < 1 are practically equivalent. But note that
Batchelor’s remark addresses the nonlinear term in the Navier–Stokes system only, whereas
our error stems also from the time derivative, since our flow is nonstationary in the lattice
frame.

In conclusion, for most problems of interest, the level of systematic error caused by
Re < 0.1, or more conservatively Re � 0.05, is probably acceptable. One possible exception
lies in the study of velocity fluctuations in steady sedimentation at large length scales [34],
whose subtle physics could amplify systematic errors that are negligible at the scale of a single
colloid. (For lattice Boltzmann work on this topic see [35].)

We turn now to the role of the gravitational capillary number, Ca. We showed in figure 1
a series of snapshots for colloidal sedimentation in binary fluids with a stratified interface, at
Ca = 280 and Re = 0.02. The simulated Ca is large, but still much smaller than would be
typical for micron-scale colloids. Indeed, for typical interfacial tension σ between two fluids,
to achieve this small a Ca in ordinary gravity would involve using millimetre sized particles—
so heavy that the appropriate Re is actually more than the simulated one, unless the solvent
viscosity is of order 1000 times larger than that of water. (Large particles in viscous solvents
are studied in [34], and certainly do show interesting properties.) For viscosities similar to
water, our parameters correspond to micron-scale particles, but in an ultrahigh gravitational
field (of order 106 times the usual one, if maximal density mismatch is used).

However, this insistence on ‘fully realistic’ matching of dimensionless parameters between
the simulations and laboratory is misguided. Judging from the sedimentation test reported
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Figure 2. Contour plots showing the magnitude of the normalized velocity field u for a reference
simulation at very low Re = 3×10−6 (top left); and velocity difference fields |�u| for Re = 0.008,
0.08, and 0.8. These are for a sphere undergoing sedimentation in periodic boundary conditions.
Reference case: contour interval 0.1. Other plots: contour interval 0.02. The arrows denote the
velocity field/velocity difference field in each case (scaled similarly).

above, Re = 0.02 is small enough to represent any small value; numerical effort is only
wasted by reducing it further. Similar remarks probably apply to Ca also. Thus, in principle
we should increase σ by many orders of magnitude if we want to place Ca within the realistic
experimental range for micron-scale colloids. But this would involve taking σ far beyond any
values benchmarked in [6], and success appears unlikely, since the hugely enhanced interfacial
forces would probably lead to numerical instability. However, it may well be that Ca = 280 is
already large enough to reproduce, at least for our chosen benchmark problem, all the realistic
colloid physics of the large-Ca limit. Perhaps, in fact, we can afford to reduce Ca by one
or two orders of magnitude and still see the same physics. (Indeed, a similar run with Ca
around 20 and Re = 0.2 gives no great differences from figure 1; data not shown.) Similar
benchmarking issues will be important to a number of other problems involving colloids in
binary solvents, and we leave it open to future study to find out how small a value of Ca is
acceptably large, in this and related cases.

In summary, we can state that the LB method has a good prospect of achieving ‘realistic’
simulations in the sense of a proper relative hierarchy of importance among competing physical
effects (capillary terms, diffusion, and inertia, as governed respectively by Ca, 1/Pe, Re).
But there is very little prospect of achieving ‘fully realistic’ simulations in the sense of
actually resolving the several decades in time and length, between one effect and the next,
that are present in typical laboratory experiments. The reason for this is primarily to do with
computational resources, and it affects competing algorithms as well as the LB one. Currently
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then, no simulation method for colloid hydrodynamics problems can be used reliably, unless
it is supported by some physical insight into the nature of the problem being solved.

7. Adding noise to the LB approach

There are many physics problems involving colloid hydrodynamics where Brownian motion
is important. The latter arises from the bombardment of the colloids by random forces from
the surrounding fluid, and in the well-known simulation method of Brownian dynamics one
simply adds a random force directly to each colloid [36]. However, this neglects many-body
hydrodynamics which, among other things, induces nontrivial correlations between the noise
forces acting on different colloidal particles. Over the years, various attempts have been
made to address such correlations within Brownian dynamics, but to do this without ad hoc
approximation means inverting a many-body mobility matrix at every time step. (That is
indeed done in full Stokesian dynamics [29, 30].) This inversion has bad scaling with system
size, and for large systems a local algorithm such as the LB one will generally prevail. The
proper way to deal with noise in the LB method is to add random forces, not to the particles,
but to the fluid itself and allow these to propagate, via the hydrodynamic fields, into the colloid
sector.

At the continuum level, this amounts to adding a fluctuating stress to equation (8) [37]:


αβ = gαvβ + pδαβ − ηαβγ δ∇γ vδ + sαβ . (12)

The fluctuating stress sαβ is a zero-mean Gaussian random variable whose variance, for
a fluid at temperature T , is fixed by the fluctuation-dissipation theorem (FDT) to be
〈sαβ(x, t)sγ δ(x′, t ′)〉 = 2kBT ηαβγ δδ(x − x′)δ(t − t ′). One way forward, due to Ladd [9],
then consists of adding a corresponding stochastic term to the microscopic stress tensor which
enters the equilibrium distribution in equation (4). However, the numerical results from this
are not accurate. This is because of the non-hydrodynamic degrees of freedom that (in order
to maintain Galilean invariance and isotropy) are necessarily retained within the LB method
alongside the hydrodynamic ones: the ‘ghosts’. If the noise terms act only on the hydrodynamic
modes, the ghosts continually drain thermal energy away so the hydrodynamics never reaches
equilibrium.

An improved method is presented in [13], in which we promote the LBE, equation (4),
into a discrete Langevin equation where the fi are interpreted as instantaneous, fluctuating
densities in phase space:

fi (x + ci , t + 1) = fi (x, t) + Li j ( fi (x, t) − f 0
i (x, t)) + ξi (x, t) (13)

with noise terms ξi (x, t). To recover thermal equilibrium, the ξi must be linked, by a FDT,
to the collisional dissipation. The derivation of the required FDT is quite subtle [13] and in
practice requires a careful analysis of all sources of dissipation within the collision process,
through a study of its eigenmodes. There are nontrivial correlations among the ξi at a given site
and time step: specifically these must be interdependent in such a way as to exactly conserve ρ

and gα. For a general LB scheme in d dimensions containing n velocities (a ‘DdQn model’),
there are precisely n eigenvectors, corresponding to the n degrees of freedom contained in the
fi at a given site. A complete mode count then consists of one null eigenvector corresponding
to the conserved density ρ; d null eigenvectors corresponding to the d conserved components
of the momentum gα; 1

2 d(d + 1) eigenvectors corresponding to the deviatoric momentum flux;
and the remaining n − (1 + d + 1

2 d(d + 1)) ghost mode eigenvectors.
We can formally set ξi = ξ H

i + ξG
i , with H the hydrodynamic subspace and G its

complement, the ghost subspace. Here ξ H
i produces thermal fluctuations in the stress tensor,
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Figure 3. The velocity response (circles) and correlator (squares) for a colloid. Colloid radius
R = 2.3; η = 1/3,N = 400. D3Q15 lattice (BGK collision matrix). Inset: the angular velocity
response (circles) and correlator (squares); R = 3.71, η = 1/6,N = 400. Correlators represent
data collected over 20 000 time steps, averaged over three Cartesian velocity components and ten
colloidal particles.

and is the noise used by Ladd [9]. The remaining terms are ξG
i : these maintain thermal

equilibrium for the ghosts. An explicit method for constructing appropriate noise is described
in [13]. In practical simulations, we continue to set mass, length, and time units so that ρ = 1
on a unit lattice, and c2

s = kBT/µ = 1/3, where µ is the mass of one of our fictitious fluid
particles. We then choose ρ/µ = N 	 1 as the mean number of particles per lattice site. (If
this inequality is not satisfied, the fluid ceases to be a continuum at the lattice scale.) Since the
LB fluid is in fact an ideal gas, fluctuations then obey 〈δN 2〉 = N = c2

s ρ/kBT .
The consistency of our approach can be assessed by measuring numerically the

‘equilibration ratio’ for fluctuating hydrodynamic quantities. This is the ratio of an actual
variance (of, say, a Fourier amplitude of momentum) to the one required by thermal equilibrium
at the temperature T chosen for the simulation. As shown in [13] our method gives equilibration
ratios within a few per cent of unity, whereas omitting ξG

i gives discrepancies of order 30%.
Note that in the method of [28], the dissipative coupling between colloids (treated as pointlike)
and fluid is accompanied by noise terms which may swamp those arising directly from the
fluid itself. This could resolve the problem with equilibration—or it could merely mask it. In
particular, correlations between different colloidal particles must depend on the proper transfer
of noise forces through the solvent; so one should carefully check for errors in these quantities.

Figure 3 shows the impulse response function r(t) = 〈v(t)〉/v(0), and velocity
autocorrelator c(t) = M〈v(0)v(t)〉/kT for a Cartesian component v(t) of the velocity of a
colloidal particle of mass M . The colloid is suspended in a quiescent fluctuating fluid of equal
density, in three dimensions on a D3Q15 lattice [13]. This is a parameter-free comparison;
FDT demands r(t) = c(t). We find excellent agreement for time intervals beyond a few
time steps; in fact c(t + �) = r(t) to high accuracy even at short times (not shown), where
the best offset � depends slightly on parameters, but is about 0.5. We attribute the offset to
imperfect resolution of a rapid sound-mediated decay at very short times. (This is singular for
an incompressible fluid, with c(0+) = 2/3.) The offset causes a slight deficit, at most a few
per cent, in the colloidal self-diffusion constant D = ∫ ∞

0 〈v(0)v(t)〉 dt from its FDT value.
There is a bigger deficit in the equal time correlator c(0), but even this becomes accurate
for larger colloids, where the fast decay is better resolved. (For practical colloid simulation,
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D matters rather than c(0).) The inset of figure 3 shows corresponding data for rotational
degrees of freedom; agreement is again excellent. We conclude that, although some issues
remain concerning the choice of optimal parameters and run times for problems involving
Brownian motion of colloids, the fluctuating LBE presented in [13] represents a very promising
way forward for simulating such problems.

8. Conclusion

In this paper we have outlined recent progress in the study of colloid hydrodynamics using
lattice Boltzmann methods. We have made significant progress in the description of colloids
in binary solvents and also for colloids in thermal solvents undergoing Brownian motion. Both
of these aspects of the code appear to behave sensibly, and in the near future we hope to perfect
these tools and apply them to a variety of interesting scientific questions beyond the simple
benchmark problem of figure 1.

Acknowledgments

This work was funded by EPSRC GR/R67699 (RealityGrid). MEC thanks B Dunweg for
valuable discussions during the CODEF meeting.

References

[1] Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Clarendon)
[2] Amati G, Succi S and Priva R 1997 Int. J. Mod. Phys. C 8 869
[3] Lockard D P, Luo L S, Milder S D and Singer B A 2002 J. Stat. Phys. 107 423
[4] Discrete modelling and simulation of fluid dynamics Phil. Trans. R. Soc. A 360

Coveney P V and Succi S (ed) 2002 Proc. 9th Int. Conf. on Discrete Simulation of Fluid Dynamics; J. Stat. Phys.
107 1–592

[5] Manz B, Gladden L F and Warren P B 1999 AICHE J. 45 1845
[6] Kendon V M, Cates M E, Pagonabarraga I, Desplat J C and Bladon P 2001 J. Fluid Mech. 440 147

Kendon V M, Desplat J C, Bladon P and Cates M E 1999 Phys. Rev. Lett. 83 576
[7] Pagonabarraga I, Desplat J-C, Wagner A J and Cates M E 2001 New J. Phys. 3 (art 9)
[8] Nekovee M, Coveney P V, Chen H D and Boghosian B M 2000 Phys. Rev. E 62 8282
[9] Ladd A J C 1994 J. Fluid Mech. 271 285

Ladd A J C 1994 J. Fluid Mech. 271 311
[10] Swift M R, Osborn W R and Yeomans J M 1995 Phys. Rev. Lett. 75 830
[11] Love P J, Nekovee M, Coveney P V, Chin J, Gonzalez-Segredo N and Martin J M R 2003 Comput. Phys.

Commun. 153 340
[12] Stratford K et al 2004 in preparation
[13] Adhikari R, Cates M E, Stratford K and Wagner A 2004 Preprint cond-mat/0402598
[14] Wagner A J and Pagonabarraga I 2002 J. Stat. Phys. 107 521
[15] Desplat J-C, Pagonabarraga I and Bladon P 2001 Comput. Phys. Commun. 134 273
[16] Wagner A J 2001 Preprint cond-mat/0105067
[17] Wagner A J 2003 Int J. Mod. Phys. B 17 193

Adhikari R 2004 work in progress
[18] Pagonabarraga I, Wagner A J and Cates M E 2002 J. Stat. Phys. 107 39
[19] Wagner A J and Cates M E 2001 Europhys. Lett. 56 556
[20] Wagner A J, Cates M E and Vollmer J 2003 Proc 3rd Int. Conf. on Computational Heat and Mass Transfer

(Banff, May 2003) ed A A Mohamad, p 40
Wagner A J, Cates M E and Vollmer J 2004 in preparation

[21] Wagner A J, Wilson L M and Cates M E 2003 Phys. Rev. E 68 045301
[22] Xi H W and Duncan C 1999 Phys. Rev. E 59 3022
[23] Stansell P et al 2004 work in progress
[24] Eggers J 1997 Rev. Mod. Phys. 69 865



Simulating colloid hydrodynamics with lattice Boltzmann methods S3915

[25] Aidun C K, Lu Y and Ding E-J 1998 J. Fluid Mech. 373 287
[26] Heemels M W, Hagen M H J and Lowe C P 2000 J. Comput. Phys. 164 48
[27] Nguyen N-Q and Ladd A J C 2002 Phys. Rev. E 66 046708
[28] Ahlrichs P and Dunweg B 1999 J. Chem. Phys. 111 8225

Ahlrichs P, Everaers R and Dunweg B 2001 Phys. Rev. E 64 040501
[29] Ball R C and Melrose J R 1997 Physica A 247 444

Silbert L E, Melrose J R and Ball R C 1999 Mol. Phys. 96 1667
[30] Phung T N, Brady J F and Bossis G 1996 J. Fluid Mech. 313 181

Foss D R and Brady J F 2000 J. Fluid Mech. 407 167
[31] Aveyard R, Binks B P and Clint J H 2003 Adv. Colloid Interface Sci. 100–102 503
[32] Chaikin P 2000 Soft and Fragile Matter, Nonequilibrium Dynamics, Metastability and Flow ed M E Cates and

M R Evans (Bristol: Institute of Physics Publishing)
[33] Batchelor G K 1967 An Introduction to Fluid Dynamics (Cambridge: Cambridge University Press) pp 230–46
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